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LETTER TO THE EDITOR 

Analytic solution for a boundary value problem in the theory of 
Brownian motion 

Anne Boutet de Monvel and Petre Dita 
Universiti Paris VII, UA 212 Mathimatiques, 2 Place Jussieu, 75251 Paris Cedex 05, France 

Received 26 March 1990 

Abstract. A closed-form formula for the solution of the first boundary value problem for 
the Kolmogorov equation is found by constructing explicitly its Green function. 

The aim of this letter is to give an explicit solution to the first boundary value problem 
for the Kolmogorov equation. The Kolmogorov equation [ 11 is the simplest equation 
arising in the theory of Brownian motion and the problem is the following. Find the 
solution of the equation 

4 ( x ,  U, t )  X , t € I W + , U E R  L f ( x ,  U, t ) = - - U - - - =  
a2f af af 
au2 ax at 

with the initial condition 

f ( x ,  U, 0) = C p ( 4  U )  (2) 

f ( 0 ,  U, t )  = 0 for U 2 0. (3) 

and the boundary condition (BC) 

We solve the problem (1)-(3) by finding explicitly its Green function. The BCS we 
shall consider for the Green function are more general having the following form 

f ( 0 ,  4 t )  = kf(0, - U ,  1) for U > 0. 

In physical applications k is a non-negative parameter bounded by unity, 0 S k s 1;  
k = 0 corresponds to absorption and k = 1 to reflection of particles upon the boundary 
x = 0. The extreme cases, k = 0 and k = 1 for the Fokker-Planck and Kramers equations, 
have been under study since the early 1940s, but until now the results have been rather 
meagre. Wang and Uhlenbeck in their review paper [2] quote the following as unsolved 
problems. 

(i)  The Brownian motion for particles in a gravitational field where one needs a 
reflecting boundary, say at x = 0, in order to prevent the particles from disappearing 
towards x = 00. 

(ii) The extension of the Smoluchowski method for finding the first passage time 
for two-dimensional Markov processes. For doing this it is necessary to introduce the 
idea of an absorbing boundary at x = 0. 

The last time this type of problem arose was in the work of reaction kineticists 
[3-51 who tried to understand, for example, the dynamics of the aerocolloidal systems. 
The physical problem is to determine the coagulation coefficient which measures the 
probability of particles to come together and coalesce as a function of their size, 
viscosity, etc. 
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Recently Marshall and Watson attempted to find the Green function with absorbing 
BC for the Fokker-Planck equation in a uniform force field [6,7]. They succeeded only 
in finding its Laplace transform given as an infinite series. However, their result proved 
to be useful in solving some boundary layer problems in the theory of Brownian 
motion [7]. 

It will become clear from what follows that for solving such problems it is necessary 
to find Green functions that are multiform solutions of partial differential equations 
like (1). The method for obtaining multiform solutions of partial differential equations 
was invented by Sommerfeld at the end of the last century [8,9] when he treated 
problems of diffraction and reflection of plane waves of light or sound incident on an 
opaque semi-infinite plane bounded by a straight edge. The method is essentially an 
extension of the image technique much used in problems of electrostatics and heat 
conduction [9]. 

Now our aim is to find the Green function of (1) for x, t E R,, U ER, which gives 
the transition probability for a particle initially at ( y ,  U )  and which satisfies the BC 

G(x,  U ; Y ,  V ; O + ) = S ( X - Y ) S ( U - U )  

G ( 0 ,  U ;  y ,  U ;  t j  = kG(0 ,  - U ;  y ,  v ;  t) for u > O  

(4) 

( 5 )  

G ( x ,  U ;  y,  v ;  t ) + O  asu++ooand as x++oo. ( 6 )  

Our starting point in finding the Green function of (1) with BC (4)-(6) is the 
fundamental solution of (1) which has the form 

( 7 )  
43 

4 ( x ,  u ; y , v ;  t j = ~ e x P I - [ ( X - X ~ ) ' + ( Y -  yo)21/t) 

where 

x = U - 3 x / 2 t  

x,= - v / 2 - 3 y / 2 t  

IT= 43 x / 2 t  

Yo = &/2( v + y /  t ). 

In polar coordinates the relation ( 7 )  is written as 

where 

X = r cos 6 

X o  = r' cos 6' 

Y = r sin 6 

Yo = r' sin 6'. 

Following Carlslaw [9] we now construct a multiform Green function which has 
the form 

where 
- 

This function has the following properties: 
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(i)  it is a solution of (1) when q ( x ,  u , t ) = O  and t + I x - y ( + / u - u l > O ;  
(ii) on the two-sheeted Riemann surface obtained by cutting along the direction 

6'+ %- from the origin to infinity it is uniform; in other words it is a periodic function 
in 6, and of period 47r; 

(iii) on this surface it has only a singularity at the point (r', 6'); on the first sheet, 
when t = 0, g(  6,6') = & ( x ,  U ;  y ,  U ;  t ) ;  on the other sheet g = 0; 

(iv) g ( 6 ,  6')-+0 as r e a .  
The idea used by Carlslaw in obtaining a formula like (8) is simple. Since 

4(x, U ;  y,  U ;  t )  satisfies (1) when q(x, U, t )  = 0 and t + Ix - yI + Iu - U > 0 the function 

where f(a) is an arbitrary function, will also be a solution by the superposition 
principle, provided the above-stated conditions hold. For obtaining a multiform Green 
function f(a) is taken to be the Cauchy kernel in the form 

when we look for an n-sheeted Riemann surface, and the integral is taken over a path 
in the complex plane a composed of two curves extending to infinity and such that 
Re cos(8 - a )  > 0 there. 

Now it is easy to verify that the functions 

Gk ( x ,  U ;  y ,  U ;  t )  = g( 6,6') - g( 6, -6'1 + k[g (19 + T, 6 ' )  - g( 6 + T,  -a')] (9) 
for k E [0, 13, satisfy the BC (4). 

BC (4)-(6). 
Thus the functions (9) give the Green functions for the Kolmogorov (1) with the 

As an application one finds easily the first passage time density as given by 

) e-A2 dA) 
+so= lom d r  exp( - r2 + rr2 + 2rr' cos 6' 

where D,(x)  is the parabolic cylinder function and b = 2 m  sin 6'12. 
t t 

Now we can prove the following. 

Theorem. The first boundary value problem (1)-(3) has a unique solution if the 
following hold true: 

(1) the function q ( x ,  U, t )  is continuous in all the variables x, U, t and satisfies a 
Holder condition in x and U ;  

(2) the function q ( x ,  u )  is continuous and bounded everywhere; 
(3) the explicit solution has the form 

f ( x ,  U, 2) = -lo* dT jom dy j: du Go(x,  U ;  y ,  U ;  t - 7 ) q ( y ,  U , T )  

+jam dy j-: du G d x ,  U ;  Y,  U; t ) d y ,  U). 

A full proof of the above results, as well as applications of the method to other 
kinetic equations, will be given elsewhere, 
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